Optimal Threshold Selection for Wavelet Transform based on Visual Quality
نویسنده
چکیده
Wavelet transform technique has been used for image compression targeting high visual quality reconstructed images even with high compression ratio. A visual quality measure such as Picture Quality Scale (PQS), which correlates well with the subjective Mean Opinion Score (MOS) may be employed on the compressed image for the quantizer to select the optimum dynamic threshold. The use of optimum threshold permits the removal of redundant information, thus leading to better compression performance with acceptable picture quality. The Results obtained with the proposed approach of threshold selection is compared with the existing technique and the performance and it is found to be better in all of the cases of images or wavelets. General Terms Image Compression, Wavelet Transform, Denoising, Threshold Selection
منابع مشابه
Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملImage Denoising based on Adaptive Wavelet Thresholding by using Various Shrinkage Methods under Different Noise Condition
Wavelet transforms enable us to represent signals with a high degree of scarcity. Wavelet thresholding is a signal estimation technique that exploits the capabilities of wavelet transform for signal denoising. The aim of this paper is to study various thresholding techniques such as Sure Shrink, Visu Shrink and Bayes Shrink and determine the best one for image denoising. This paper presents an ...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملCombined Use of Sensitivity Analysis and Hybrid Wavelet-PSO- ANFIS to Improve Dynamic Performance of DFIG-Based Wind Generation
In the past few decades, increasing growth of wind power plants causes different problems for the power quality in the grid. Normal and transient impacts of these units on the power grid clearly indicate the need to improve the quality of the electricity generated by them in the design of such systems. Improving the efficiency of the large-scale wind system is dependent on the control parameter...
متن کامل